
Ada@ Test and Verification System: (ATVS)

Tom Strelich

General Research Corporation
5383 Hollister Ave.

P.O.Box 6770
Santa Barbara, CA 93 1 1 1

1 Introduction

The Ada Test and Verification System (ATVS)l is an integrated set of
software tools for testing, maintaining, and documenting Ada programs.
The objectives of the ATVS are to improve the reliability and maintainability
of Ada programs. GRC performed the research and analysis leading to the
specification of ATVS requirements and its high-level design2 .
1.1 Background and Overview

Software testing, verification, validation, and certification are critical
software development problems facing NASA. To overcome these
problems, NASA has invested large amounts of time and money to correct
and certify systems only to find that, when deployed, they often behave
erratically or produce incorrect results. Spending more time and money on
exhaustive testing won’t solve the problem either since most software
programs found in mission critical systems (such as the Space Station) art. of
such size and complexity that no amount of testing can guarantee completely
correct, error-free performance. The objective then is to make the testing
process as effective as possible by providing computer-aided assistance to the
software engineer to help them discover the greatest number of errors for
every hour spent testing.

@ Ada is a registered trademark of the U.S. Government Ada Joint
Program Office (AJPO).
1 This work was performed under Rome Air Development Center Contract

2 Ada Test and Verification System (ATVS): Final Report, General
Research Corporation, CR-6- I30 1, September 1985.

F30602-84-C-0 1 1 8

6.1.4.1

'

A proven approach to software testing is the use of Automated
Verification Systems (AVS). This technology was pioneered both by NASA
and Rome Air Development Center, and GRC has participated actively in
these efforts. For NASA, GRC developed an AVS for the AED language.
For RADC, GRC developed AVS's for FORTRAN, COBOL, and JOVIAL
573 (FAVS, CAVS, and J73AVS). The ATVS represents the logical
evolution of AVS technology in support of the Ada programming language.

Ada provides a high-level programming language with advanced
capabilities addressing reliability issues (e.g., strong data typing, exception
handlers, information hiding, etc.). However, the Ada language alone
represents only a partial solution to software development problem
confronting NASA: the full benefit of Ada to Space Station Software
development will be realized through the synergistic interaction of the Ada
language, the Software Development Environment, and supporting software
tools (e.g., ATVS).

1.2 Operational Concept

Figure 1.1 illustrates the ATVS high-level operational concept:

1. Ada source code is submitted to the ATVS for Static Analysis
(e.g., package dependencies, program call tree, global symbol
information, data flow anomalies and errors, unreachable code,
potential task deadlocks, etc.). In response to the Static analysis
reports and displays, the user makes whatever corrective actions
are required and repeats the process until there are no statically
detectable errors in the source code.

2. The user's Ada source code is then Instrumented with run-
time data collection probes which capture execution information
(such as execution coverage, performance timing, and task state
activity) for subsequent analysis and reporting.

3. The instrumented Ada source code is then compiled, linked,
executed (with user supplied test data) with the ATVS
instrumentation probes collecting run-time execution
information. Assertion violations are reported to the user who
may then make corrective actions and repeat the process.

4. The run-time execution data collected by the ATVS
instrumentation probes is analyzed producing execution
coverage, timing, and task state reports. Based on these reports
the user takes corrective actions such as modifying the test data

B . 1 . 4 . 2

L 1
Instrumentation w

Compile

Test
Instrumented -b - Take --I

Program Action

Take
Action - -

Figure I . I . ATVS Operational Concept.

B.1.4.3

to effect execution covemge or modifying the source code to
improve performance, eliminate unanticipated task interactions,
and correct logic or design errors,

As suggested by the previous scenario, application of the ATVS is
focused on the coding and testing phases. Figure 1.2 illustrates the role of the
ATVS in the DOD-STD-2167 software development cycle: namely, Coding
and Unit Testing, CSC Integration and Testing, CSCI Testing, and
Maintenance Phases (while the Maintenance phase is not explicitly described
in DOD-STD-2167, we have included it since the ATVS is expected to be
used quite heavily for software maintenance).

Figure 1.2. Role of the ATVS in the Software Life Cycle,

1.3 Objectives

The objective of the ATVS is to provide a set of computer-based tools
which improve the reliability and maintainability of Ada software systems.
The. specification and design of the ATVS concentrated on the environmental
context: that is, its effective integration within an advanced software
development environment (such as NASA's SDE) and its contribution to that
environment (e.g., support for project management, change and
configuration management, test and integration, documentation,
requirements traceability, etc.). The ATVS will provide detailed program
information for software engineers and programmers and summary
information for software project managers. The ATVS can provide
management visibility by serving as a window into the software development
process.

13.1.4.4

2 Capabilities

The ATVS will provide both Static and Dynamic Analysis of user
programs. The requirements and design of the ATVS concentrated on
providing support for the unique features of the Ada language, host-target
testing issues, distributed environments, and advanced user interface
capabilities.

ATVS capabilities fall into four functional groups: Static Analysis,
Dynamic Analysis, Report Generation, and User Interface capabilities.
Table 2.1 summarizes ATVS Functional Capabilities by group. Specific
capabilities of the ATVS are described in the following paragraphs.

Table 2.1. ATVS Functional Capabilities by Group

Static
A n a l y s i s
Source Processing

StaticlStructural
Analysis

Static Task
Analysis

Programming
Standards

Dynamic
A n a l y s i s
Instrumentation

-- Coverage
-- Timing
-- Tasking

Executable
Assenions

Post-execution
Analysis

Unit Testing

Report
G e n e r a t i o n

Automated
Repom

DOD-STD-2 I67
Documentation

Prologue Insenion
& Extraction

. Software Quality
Metric Dam

User
I n t e r f a c e
Batch and
Interactive User
Interface

Interactive
Wal ki hroug h

2.1 Static Analysis Capabilities

Ada Sou rce Processing. The ATVS will process the Ada language and
perform lexical, syntax, and semantic analysis necessary for subsequent static
and dynamic analysis. I t will produce a DIANA intermediate representation
of the users program which will be used to build the ATVS database. The
ATVS database is the central repository of program information and serves
as the primary means of communication between ATVS tool components.

u . 1 . 4 . 5

and Stru-. The ATVS will provide extensive static
and structural analyses concentrating on malyses unique to the Ada language.
The analyses include:

Package Dependencies -- describes "with" and "use" context clause
dependencies and is valuable for change impact analysis

Compilatiodrecompilation Order Dependencies -- Provided by
most compilers, it is useful for maintaining system consistency
subsequent to program modification

Data Flow ErrordAnomalies -- identifies variables declared but not
used, uninitialized variables, actual output parameter not set, etc.

Global Symbol Use -- Identifiers, Types, Overloadings, Generics,
Exceptions, Interrupts

h f k Task Ana lysis. This capability identifies the set of all possible
sequences of concurreilcy in a given program. This sequence set is then used
to identify features of the program's synchronization structure such as: all
possible task rendezvous, all potential areas of concurrent execution, and
areas of potential task blockage (i.e., deadlock). This capability will utilize
the Temporal Semantic Analysis approach described by Buiir, et a13 .

source code auditing against a set of modifiable programming standards. For
example, "the maximum 4# of statements in a procedure IS 25". The ATVS
has defined a set of 46 programming standards.

2.2 Dynamic Analysis Capabilities

of the insertion of software probes into the user source code. These
instrumentation probes collect run-time program information for subsequent
analysis and reporting. The types of instrumentation include: program
execution coverage, program timing, and tasking activity. An executable
Assertion is a statement placed in the source code by the programmer to
indicate that the specific condition should exist. For example:

0

dards C h e c k . This capability provides for user

Instrumentation and Executable Assertions. Instrumentation consists

3 Buhr, R., et al. "Experiments with PROLOG Design Descriptions and
Tools in CAEDE: An Iconic Design Environment for Multitasking,
Embedded Systems," Proceedings of the 7th Int'l Conf. on Software
Engineerins JEEE Comp iter Societv. 198 0

0.1.4.6

-. assert ((velocity - v-naught) > epsilon)

m%im u i i d & d f ((i i a , d h t . a h r t r n n n n t - m w) ~ ~
execution, the Assert statement can tither display an assertion vioration
message to the user, or take some alternative action defined by the user.

kine). This i r g , and Tas
capability processes the program execution data collected at run-time by the
instrumentation probes embedded in the user's source code. Analyses
include: (1) execution coverage for programs at the subprogram, branch,
and statement level; (2) execution timing at the subprogram, named block, or
statement level; (3) task state transitions, basically a trace of the program's
tasking activity. The tasking analysis information can be used in cooperation
with the static task analysis information to determine the extent of task
sequence set coverage (task synchronization set coverage represents the
functional analog of execution coverage in sequential programs).

program executions. This capability allows post-execution analyses to reflect
incremental and cumulative execution coverage, timing, and tasking
information. This type of historical information is an essential part of
software documentation.

Post-execution AualYsis (Coverw. T1m . .

The ATVS will provide data collection for both single and multiple

Unit Testing. This capability provides for automatic (with user
direction) construction of Ada drivers and stubs. It will identify the
undeveloped portions of a program and will construct Ada driver and stub
"skeletons" which can be customized to a user's particular testing
requirements. This capability supports both top-down and bottom-up
development methods.

ATVS Dynamic Analyses will be supported for both host-resident and
target-resident Ada programs (assuming an upload/download capability
between the host and target).

2.3 Report Generation Capabilities

I t is important to note that the ATVS design has separated the process
of static and dynamic analysis from the process of report generation. The
effect of decoupling these two activities (which communicate through the
common database) is that it allows definition and incorporation of new
analyses and reports to proceed independently of one another. This approach
provides the flexibility necessary for the incorporation of new capabilities
into the ATVS allowing it to evolve over time in response the the

B.1.4.7
ORIGINAL PAGE fS
OF ?OOR Q U I T 4

environment, the user community, and advances in software engineering.
Table 2.2 summarizes ATVS automated reports.

Table 2.2. Summary of ATVS Automated Reports.

Static Analysis Repcrts

Summary Information Report
Compilation Unit Overview iteport
Compilation Order Report
SubprogramlTask Dependency Report
Subprogram Cross Reference
Task Cross Reference
Package WithKJse Dependency Report
Package Element SetNse Cross Reference
Data Dictionary Report
Global Entities Cross Reference
110 Statements Report
Type Information Report
Type Cross Refrence Report
Object Cross Reference Report
Type Derivation Report
Generic Instan!iatioa Report
Exception Handling Report
Interrupt Handling Report
Overloading Information Report
Statement Profile Report
Software Metrics Report
Target Code Cross Reference
Data Flow Anomaly Report
Programming Standards Report
Source Re-analysis Report

Dynamic Analysis Reports

Testcrse Report
Execution Coverage Summary Report
Branch Coverage Summary Report
Detailed Coverage Report
Branch Report
Reaching Set Report
Execution Timing Report 1
Execution Timing Report I I
Task State Report

DOD-STD-2167 Reports

Calling Tree Report
Functional Allocation Report
Global Data Definition Report
Input Data Report
Local Data Deitnition Report
Output Data Report
Element Utilization Report
File Description Report
Record Drscription Report

Automated Static and Dvnamic Analysis Rgports. All static and
dynamic analyses performed by the ATVS will be available to the user in
both interactive display and hardcopy forms. The ATVS will provide 25
Static Analysis Reports and 9 Dynamic Analysis Reports.

DOD-STD-2 1 67 CO mpatible Reports . The ATVS will provide nine
automated reports consistent with DOD-STD-2 167. These reports are
variants of the ATVS automated reports and are generated from database-
resident information provided by ATVS static and dynamic analyses. The
separation of analysis and report generation described above allows for the
definition of revera1 reports based on the same analysis. This will allow

0
B.1.4.8

definition of new reports (both informal and DOD-STD) without requiring
development of new analyses.

P r o l o g u e . The ATVS supports the insertion of
selected automated report information (e.g., package, subprogram, and task
dependencies, global symbol use, etc.) into a prologue (i.e,, a dcscrittive
preface to a program unit). Prologues are embedded in the user's source
code as Ada comments and can be augmented with user providell
information. Automatic insertion of prologuc infarmation ensures current
and consistent program documentation. Prologues can be automatically
extracted from the source code to generate formal documentation.

Raw Software Met ric Dau . The ATVS will provide raw software
quality metrics for analysis by other environment tools. These metrics (37
indiviuual metrics supporting l.8 software quality criteria) are consistent
with the STARS Data Collection Forms, Software Evaluation Report and
Software Characteristics Report4 .
2.4 User Interface Capabilities

-andive I Jser Interface. The ATVS will provide both a
batch and interactive user interface. The batch interface will utilize a bztch
command language to direct ATVS processing. The full complement of
ATVS capabilities (except for exclusively interactive activities such as
Interactive Walkthrough) will be accessible through the batch command
language.

The Interactive User Interface will be based on a hierarchical menu
structure providing users controlled access to ATVS functions. There wi l l
be an extensive on-line help facility providing both reference and tutorial
information. The Interactive User Interface will take advantage of advanced
terminahorkstation bit-mapped graphics capabilities such as multiple
windows, pull-down menus or palettes, and alternate input devices such as
mice.

Interactive Walkthroueh. 1nte.active Walkthrough replaces thc:
manual process of "digging" through large source listings, cross reference
reports, and other forms of documentation. It provides users with
controlled, interactive access to the source code comprising a large software
system. The user can browse the source code based on the program's call

4 Interim Software Data Collection Forms Developmen! -- Software
Evaluation Report, Softhare Technology for Adaptable, Reliable Systems
(STARS), RADUCOEE Griffiss AFB, NY, June 1985.

B . 1 . 4 . 9

tree or as directed by the user, and the multiple window capabilities of the
interactive user interface allow simultaneous access to various ATVS static
and dynamic reports.

3 Database and Workstation Issues

3.1 ATVS Database

The ATVS database was designed as an "Entity-Relation-Attribute"
(ERA) Database composed of 13 database entities and 17 associated
relationships. The ERA model was selected for its expressiveness and
flexibilty: The ATVS database contains a great deal of semantic program
information that is best represented in the ER model.

3.2 ATVS Functional Distribution to Workstations

The ATVS was designed to operate in whole or in part on either a host
machine (such as a VAX) or a microcomputer workstation (such as a SUN or
VAXStation 11). This flexibility allows program managers to relegate
certain ATVS functions (e.g., source processing, instrunentation, etc.) to the
host machine, and other functions (e.g., static analysis, post-execution
analysis, interactive walkthrough, etc.) to the workstation. Microcomputer
workstations often provide advanced capabilities (such as multitasking, bit-
mapped graphics, multiple windows, etc.) that the host cannot easily (if at
all) provide without serious degradation in system response. An additional
benefit target system testing since microcomputer workstations are often
used as embedded system development erivironments.

0

4 Current Status and Conclusion

The ATVS functional description and high-level design5 are complete
and are summarized in this paper. The ATVS will provide a comprehensive
set of test and verification capabikies specifically addressing the unique
features of the Ada language, support for embedded system development,
distributed er*;ironments, and advanced user interface capabilities. Its design
emphasis KZS on effective software development environment integration
and flexibility ?o ensure its long-term use in the Ada software development
communitv.

5 Ada Test and Verification System (ATVS); Functional Description,
General Iicsearch Corporation CR-2-1301, September 1985. 0

B. 1.4.10

